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Double-diffusive instability in an inclined fluid layer 
Part 2. Stability analysis 
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Linear stability analysis is applied to the problem of a density-stratified fluid con- 
tained in an inclined slot being subjected to a lateral temperature gradient. Stability 
equations are solved using the Galerkin technique with 12  terms in the truncated 
expansion series. Within the range of 8 considered, < 75", critical instability was 
found to be of the stationary type. Results of critical thermal Rayleigh numbers and 
wavenumbers at  all inclination angles are in good agreement with the experimental 
results obtained earlier (Paliwal & Chen 1980). Contrary to intuition, these results 
show that the system is more stable when the lower wall is heated. This is shown to be 
the result of the increased vertical solute gradient in the steady state prior to the onset 
of instabilities when the heating is from below. 

I. Introduction 
In  a companion paper (Paliwal & Chen 1980, hereinafter referred to as I) we reported 

the results of a series of experiments conducted in a stratified fluid contained in a 
narrow tank. The tank could be set a t  any angle of inclination with respect to the 
vertical, and a constant temperature difference could be maintained across the tank. 
We have obtained the critical thermal Rayleigh numbers and wavenumbers through 
a range of angles of inclination 0 from - 75" to + 75". Negative angles denote heating 
of the upper wall and positive angles denote heating of the lower wall. The results show 
that the system is more stable when heating is from below, and the wavenumber 
decreases as 18) increases. In  this paper the results of a linear stability analysis of the 
problem are reported. 

The convective stability of an inclined homogeneous fluid layer was investigated by 
Hart (1970, 1 9 7 1 ~ )  both experimentally and theoretically. He found that, for 

loo < 101 < goo, 

the instabilities were longitudinal rolls while, for 101 < lo", the instabilities were 
transverse rolls. 

The stability of a vertical layer of stratified fluid subjected to lateral temperature 
gradient was first treated by Thorpe, Hutt & Soulsby (1969). They did a simplified 
stability analysis in which the non-diffusive nature of the walls and the slow boundary- 
layer flows along the two walls were ignored. These approximations become better as 
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FIGURE 1. Co-ordinate system. 

the solute Rayleigh number R, becomes very large. The results of their stability 
analysis agreed quite well with their experimental results, which were obtained at  
large values of R,. 

Hart’s (1971 b)  analysis of the same problem accounted for both the actual basic 
velocity field and boundary conditions. By the use of the Galerkin technique he found 
critical conditions for a range of values of R,. His results at  large R, were indistinguish- 
able from those of Thorpe et al. By making a finite-amplitude study of the problem, 
Hart (1973) was able to improve the agreement between the theoretical results with 
the experimental results of Thorpe et al. 

In this paper, we report solution of the stability equations using the Galerkin 
method. Our expansion functions are essentially the same as those used by Hart 
(1971 b ) ,  with one important difference. In the expansion for the salinity S, a constant 
term is added. The boundary conditions on S are preserved since they involve only 
normal derivatives. For the vertical geometry, our results differ only slightly from 
those of Hart (1971 b ) .  However, for cases in which 8 + O ” ,  erroneous results would be 
obtained if the constant term were neglected. 

2. Governing equations 
Figure 1 shows schematically the inclined fluid layer bounded between rigid parallel 

walls which are a small distance D apart. The walls are infinitely long in the z direction 
and are inclined at  0 from the vertical. There is a stable linear density gradient 

$0 = IP’-ldP’/dClo (cm-l) 

due to the solute in the vertical direction. The constant-solute-concentration lines, 
which are horizontal in most of the interior region, curve near the sloping boundaries 
in order to meet the boundaries normally as required by the non-diffusive boundary 
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conditions. The temperature gradient, which is also linear, is in the direction normal to 
the walls. The isotherms are thus parallel t o  the boundaries. The walls are perfect heat 
conductors and are maintained at constant temperatures. The temperature difference 
across the boundaries is AT.  

The density of the fluid is 

p’ = ph[ 1 - a( T’ - Th) + P(S‘ - Sh)], (1) 

where 

T’ a,nd S‘ denote temperature and salinity respectively, while subscript 0 denotes 
reference values. 

Assuming two-dimensional flow and using the Boussinesq approximation, the 
equations of motion are cross-differentiated to  eliminate the pressure. The resulting 
vorticity ( w )  equation in dimensionless form is 

where 

1 Dw 
Pr Dt 
--= 

and Pr = Y / K T .  

The diffusion equations for heat and salt are 

-- DT - V 2 T ,  
Dt (3) 

In the above equations, g is the gravitational acceleration, K ,  and K~ are the diffusivities 
of salt and heat respectively. These equations are rendered dimensionless by using 
D, D 2 / ~ T ,  AT and DjdS/d<I, as characteristic length, time, temperature and salinity, 
respectively. 

2.1. Baaic flow 
For an infinitely long slot, the basic flow is parallel to the boundaries with 

w = -dw/dx. 

Further, there is no temperature gradient in the z direction and the non-dimensional 
solute gradient in the z direction is constant and equal to - cos 8. Equations describing 
the steady basic flow thus are 

-R,sinOcosO = 0, 

and -+ -case = O .  :: (:: ) ( 7 )  

25-2 
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These equations may be combined into a single equation: 

where 

The boundary conditions are 

d3w 
- Rs(sinB+R,)cosB at x = &*.  a- w = 0, (9) 

The steady-state solution is 

w -  
G [ sinh (Kx + :) sin ( K x  - :) - 2K3 (sin K + sinh K )  

-sin(Kx+:)sinh(Kx-:)], (10) 

-=- dSb G [L(cosh  (Kx++)sin ( K x - ; )  
dx :: 'OS ' 2K3 (sin K + sinh K )  2K 

- sinh (Kx +:) cos (Kx- :)I - & (cosh (Kx- :) sin ( K x  + :) 
- sinh (Kx - :) cos (Kx + :)I] - 2 cos 8 (&) , 

where G = [RT + R, sin 81 cos 8. 
Steady-state basic velocity fields evaluated at  the mean experimental condition with 

Pr = 6-7, K,/K, = 83 and R, = 362000 for 8 = OD, i 30" and i 60" are shown for 
R, = 0 and 100000 in figure 2 .  In the absence of heating (R, = 0), there is no flow at  
all if the boundaries are vertical. When the slot is inclined, the flow is always up the 
lower wall and down the upper wall, its magnitude increasing with inclination 8. 
For negative values of 8, the upper wall corresponds to x = 0. The effect of heating 
(R, = 100000) is always an upward flow near the hot wall and a downward flow near 
the cold wall. For positive angles, therefore, heating (from below) results in further 
increase of the already upward flow near the lower boundary. In the case of negative 
angles, the effect of heating (from above) is to decrease the magnitude of the velocity, 
with possible reversal of its direction if heating is increased. In  general, a t  a given 
R, and 8, a velocity field of higher magnitude exists for the case of heating from 
below compared to that of heating from above. The velocity field is always confined to 
a region extending only about a tenth or so of the slot width near the walls. The peak 
velocity occurs about halfway in this small region, and its typical value a t  8 = 60" and 
R, = 100000 is about 10-3 cm s-1. Most of the interior region has no motion. The 
distribution of velocity in the slot is antisymmetric in the x direction. 

Figure 3 shows the basic steady-state solute gardient dS,/dx at  8 = OD, k 30" and 
60" for R, = 0 and R, = 100000. In most of the interior region, dSb/dx has a con- 

stant value for a given 8 and R,. In the absence of heating, dS,/dx assumes the value 
(-sin 0) in the interior as a result of initial vertical stratification. In the buoyancy 
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FIGURE 2. Steady-state velocity for Pr = 6.7, K T / K S  = 83 and Rs = 362000. 
-, RT = 0; ---, RT = 100000. 

layer, dS,/dx increases from zero a t  the boundary to a peak value not far from the wall, 
and then decreases to a constant value in most of the interior. The effect of heating is 
additive for positive inclinations and subtractive for negative inclinations, in the 
buoyancy layer as well as in the main interior. The magnitude of the gradient dS,/dx, 
a t  a given 13 and R,, is higher for the heating-from-below case compared to that of 
heating from above. The dS,/dx profile is always symmetrical in the x direction. 

2.2.  Linear stability equations 

Since the secondary flows observed in the experiments of I are periodic in the vertical 
direction, we assume all perturbations are periodic in z with a wavenumber k .  These are 

u ( x )  exp ( i k z + p t ) ,  etc., 

with p complex. When these perturbation quantities are substituted into the basic 
equations, retaining only linear terms we obtain the following equations written in 
terms of the perturbation stream function $, where 

ik 
P r  Pr 

- 2 ( a 2  - k2) $ + (d2 - k2)2 $ - - {Wb(d2 - k2)  $ - $ d2W,} 

+ cos e( R,  d T - R, dS) - i k sin I3( R ,  T - R, S )  = 0, ( 1 3) 
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FIGURE 3. Steady-state solute gradient for Pr = 6,7, KTIKS = 83 and Rs = 362000. 

- p T + ( d 2 - k 2 ) T - i k $ - i k w b T  = 0, (14) 

- 2 p S + ( d 2 - k 2 ) S + i k $  cosOd$=O. (15) 
KS 

The boundary conditions are 

$ = d $ = T = d d S = O  a t  x =  T i .  (16) 

In these equations, d denotes dldx. When 8 = 0 these equations reduce to those 
analysed by Hart ( 197 1 b )  . 

3. Method of solution 
The stability equations (13)-( 15) are a set of ordinary linear differential equations of 

total order 8. These, together with the boundary conditions (16), are solved using the 
Galerkin method. Finlayson (1 972) has reviewed applications of the Galerkin method 
to a number of convective instability problems. Stability of pure thermal convection 
between sloping boundaries and double-diffusive convection in a vertical slot has been 
studied, using this technique, by Hart (1970, 1 9 7 1 ~ )  b ) .  The success of this method in 
these two investigations as well as a number of others (see Finlayson 1972) provides the 
necessary impetus for its use in the present problem of double-diffusive convection in 
an inclined slot. 
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In principle, the Galerkin method is a special case of the more general method called 
the method of weighted residuals (MWR), which is a technique to obtain approximate 
solutions of higher-order differential equations. In the MWR, the unknown solution is 
expanded in a set of appropriately chosen trial functions with adjustable constants 
(or functions). These constants or functions are then determined so as to give the best 
solution of the system of differential equations. To do so, the assumed solution is 
substituted in the system of differential equations, and the residuals, appropriately 
weighted, are set to zero in some average sense to give the best values of the unknown 
constants or functions. In the Galerkin method, the trial functions chosen form a 
complete set, and the trial functions themselves are used as weighting functions. In 
other words, the residuals are made orthogonal to the respective trial functions. 

It is convenient if the trial functions chosen satisfy the boundary conditions of the 
problem. A common approach (Finlayson 1972) is to choose the eigenfunctions of some 
simpler version of the eigenvalue problem under consideration as trial functions. Such 
a simpler eigenvalue problem, corresponding to equation (13),  is 

d4$ = h4$, 

with boundary conditions $ = d$ = 0 at  x = T 4. The appropriate trial functions are 
then the following. 

Even function: 

where tanh +pn + tan i p n  = 0. 

sinh (pn X) sin (pn x) Odd function: On = - if n iseven, 
sinh +p, sin +p, 

where coth+p,-cot i p n  = 0. 

Following a similar reasoning, the trial functions for temperature T and solute 
concentration S are the ordinary trigonometric functions satisfying the appropriate 
boundary conditions. 

The solutions expressed in terms of the trial functions chosen are: 

where 

where 

and 

where 

En if n i s  odd, 

@ n = (  0, if niseven; 
N 

n = l  
T = C bnTn, 

cosnnx if n i s  odd, 

sinnnx if n i s  even; Tn= [ 
N 

n=2 
s = c1+ c ensn ,  

sin (n - 1 )  nx if n is even, 

sn=[ cos (n - 1) TX if n is odd. 
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It may be noted that the trial functions chosen form a complete set, are orthogonal and 
satisfy the boundary conditions of the problem. 

The next step is to determine the coefficients a,, b,  and c, in equations (17)-(19). 
This is done by substituting equations (17)-(19) into the stability equations (13)-(15) 
and operating the residual equations by 

Sj dx, 
I4 $jdx,  1’ q d x  and 1 3 

-3 -4 -4 
respectively. The result is a system of simultaneous algebraic equations which, in 
matrix form, are 

All 4 2  A13 Bll 0 [-:: ::: -’[ ?2 B!j] E] = O’ (20) 

where the elements A j i  and Bji  are sub-matrices involving integrals of products of 
perturbation quantities and products of the basic flow quantities; for details see Paliwal 
( 1  979). The integrals which do not involve the basic state can be evaluated exactly. 
The integrals involving the basic state are evaluated numerically by using the Scienti- 
fic Subroutine Package DQSF based on Simpson’s rule and available on System IBM 
3701168. A 21-point mesh between x = - 8 and x = + 8 is used. A higher number of 
mesh point does not result in any additional accuracy. 

Equation (20) writen in a more compact form is 

( A - p B ) X  = 0 ,  (21) 

where Xis the vector made up of coefficients a, b and c ,  A and B are 3(m - 1) x 3(m - 1) 
matrices with complex elements. Premultiplication of equation (21) by B-’ gives 

( B-lA - P I )  X = 0, (22) 
where I is the unit matrix. 

It is recalled that the elements of matrices A and B are functions of parameters 
R,, A,, Pr,  8, K T / K s  and k .  For a given set of values of these parameters, solution of 
equations (22) amounts to the determinations of eigenvalues of the complex matrix 
B-’A. For a non-trivial solution of equations (22), 

det(B-lA-pl) = 0. (23) 

(24) 

As noted earlier, p ,  in general, is complex and has the form 

P = P R ~  + tPIrn* 

For marginal instability, pRe = 0. Further, p, ,  = 0 for stationary instability and 
p, ,  + 0 for oscillatory instability. 

It is convenient to assume p,, = 0 and determine, first, the marginal stationary 
instability ( p  = pne = p,, = 0) .  It is done by finding, for given values of R,, 0, Pr and 
K T / K s ,  zeros of the equation 

det ( B-l(RT, L) A(R,, k)) = 0 ,  (25) 

or 

or 

as det (B-l(R,, k)) =+ 0 if B-l exists. 

det (B-l(R,, k)). det (A(R,, k)) = 0, 

det (A(R,, k ) )  = 0,  
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Equation ( 2 5 )  is a polynomial of degree 3 ( m -  1) in R, and k. For a given value of 
wavenumber k ,  3 ( m  - 1) values of R, are possible and vice versa. The minimum value 
of R, and the corresponding k is the critical wavenumber. For arbitrary discrete 
values of R, and k ,  the determinant of A is computed. For a given k ,  a change in sign 
of the determinant owing to an  increment in R, indicates a zero of the determinant. 
An iteration procedure is used to determine the minimum R, (critical) and the 
associated critical wavenumber. 

After t.he critical values of R, and k for stationary instability are determined, 
eigenvalues of the matrix B-lA are determined for the same values of parameters 
R,, 8, Pr and K T / K s .  At marginal instability, the real part of only one eigenvalue 
changes sign from negative (decaying disturbance) to  positive (growing disturbance). 
If the accompanying imaginary part of this eigenvalue is non-zero, the instability is 
oscillatory; otherwise i t  is stationary. If a t  values of parameters R, and k correspond- 
ing to the stationary instability there is more than one eigenvalue having positive real 
parts, subcritical oscillatory instabilities are possible and the search for the critical 
R,. is continued. The lowest R, for any k, a t  which just one of the eigenvalues has a 
positive real part, corresponds, then, to critical R, and the corresponding k is critical 
k. Subroutines LEQTIC and EIGCC of the IMSL library available on system IBM 
370/ 168 are used to compute the determinants and the eigenvalues respectively. 

Values of the critical parameter RT,c and k, a t  the mean experimental conditions 
(see I) of Pr = 6.7 ,  K,/K, = 83 and R, = 362000 a t  selected angles of inclination are 
calculated with N assuming values of 8,  10, 12, and 14. The results for N = 12 differ by 
less than 0.1 yo from those for N = 14. It is therefore assumed that convergence is 
obtained for N = 12. It is noted that, even at N = 8, the values of RT, are within 5 Yo 
and the values of k, are within 10 % of those obtained with N = 12. The critical values 
obtained by theoretical considerations with N = 12 are compared with the experi- 
mental values obtained in I, 3 5. 

4. Specialized known cases of the generalized problem 
Several special cases of the present problem are already known. To give support to 

the theoretical analysis presented in the preceding sections, it is instructive to recover 
these cases from the generalized analysis and compare the results with earlier pre- 
dictions. 

4.1. Special case of R, = 0 (homogeneousJEuid) 

I n  the limit of Rs-+ 0, equation (10) for the basic velocity reduces to  

wb = BR, cos e [ x 3  - *XI. 

This is the same as reported by Hart (1970, 1 9 7 1 ~ )  for pure thermal convection in a 
narrow and long tilted slot (limit of pure conduction across the slot). With our calcula- 
tions, R, = 0 will involve a number of singular terms. To avoid this difficulty, we 
calculated the case R, = 1.0 for critical instability of the fluid a t  different tilt angles of 
the slot. The results are shown in figure 4, together with Hart's (1970) result corres- 
ponding to  the exact limit of R, = 0. These are all for transverse waves which derive 
their energy from the mean shear when 13 < 60", and from the unstable temperature 
field for 0 near 90". The satisfactory approach of the full problem to zero solute strati- 
fication is obvious. 
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4.2. Special case of 19 = 0" (vertical f luid layer) 

Double-diffusive stability criteria for vertical geometry have been reported by Hart 
(1971 b )  for a range of Rs from 0 to 105. Comparison of these with the corresponding 
results obtained in the manner of Q 3 ( N  = 8) is shown in figures 5 and 6. As is already 
known, the critical instability is of the stationary type. Some disagreement is seen a t  

FIGURE 4. Critical thermal Rayleigh number for the inclined homogeneous fluid layer. 0, present 
results for Rs = 1 ; x , Hart's (1970) results for Rs = 0. The dotted line indicates a possible 
variation of RT, between 60" and 75". 
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FIGURE 6. Critical wavenumber for a vertical layer of stratified fluid. See figure 5 

for symbols and comments. 

values of Rs between 10 and 100 which are low but sufficient for the sideways diffusive 
mechanism to be possible. The disagreement is due to a small difference in the choice of 
the trial functions for use in the Galerkin method between us and Hart. His expansion 
of the variable S in terms of trial functions did not include a const,ant leading term, as 
used in equations (19) here. This addition of a constant term is most crucial for values 
of 8 4 0' aswe have found that, without the constant term, the Galerkin methodwould 
yield much higher RT, values. For high R,, there is excellent agreement of the stability 
predictions of this work with previous theoretical and experimental investigations. In  
fact, the predictions of the present theory are in full agreement with the asymptotic 
relation of Thorpe et al. (1969). 

4.3. Special case of 8 = 90" (horizontal Jluid layer heated from below) 

It is to be noted that the theoretical model developed here is not suitable for the special 
case of 8 = 90" (horizontal geometry). In  the limit of 8 = go', equation (7), describing 
the basic steady-state solute distribution in the x direction, becomes 

d2S - = o  
dx2 

with boundary conditions dS/dx  = 0 a t  x = T 4. The solution of this implies vertical 
constant-solute concentration lines, or no stabilizing vertical stratification. 

In  reality, an initially-linear stable vertical solute gradient in a thin horizontal fluid 
layer enclosed between rigid and impervious boundaries is not steady. It does, how- 
ever, go to steady state of zero gradient rather slowly, in view of the small molecular 
diffusivities of most solutes. A crude and arbitrary approximation of the basic state 
corresponding to quasi-steady conditions which may exist in real experiments like 
those of Shirtcliffe ( 1  969) is 

wb = 0,  dSb/dx = - ( c o s ~ T x ) ~ ' ~ ~ ~ ~ ~ .  

These equations satisfy the actual boundary conditions associated with rigid, heat- 
conducting and impervious boundaries. The gradient (figure 7) dS,/dx is almost - 1 
everywhere except very close to the wall. It is interesting as well as encouraging that 
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FIGURE 7. Assumed steady-state solute gradient at 0 = 90". 

computations made with this crude model of the basic state for Pr = 6.7,  R, = 362 000, 
K T / K s  = 101 and 8 = 90" predict oscillatory instability a t  RT, , = 323 000 and k, = 6.54. 
This RT,,  is only 2.7 yo higher than the predictions of Veronis (1965) 

for large values of R,. 
' T , ,  = [Pr / ( l+  Pr)l R, 

5.  Results and discussion 
The true measure of the success of the theoretical model is its ability to predict the 

experimental data obtained in I. The comparison of the experimental results with 
corresponding theoretical predictions for critical thermal Rayleigh number ( RT, ,) and 
critical wavenumber (k,) are shown in figures 8 and 9. The theoretical computations 
have been performed with Pr = 6.7,  K T / K s  = 83.0 and R, = 362 000, which correspond 
to  average conditions of the experiments. Results have been obtained using the 
Galerkin method, with 12 terms in the truncated expansion series. These are tabulated 
in table 1. As stated in previous sections, - 8 corresponds to  heating from above and 
+ 8 corresponds to  heating from below. Theoretical computations show that, for all 
angles in the range - 75' < 8 < + 75', the critical instability is of the stationary type. 

It may be observed that the trend of the RT, c ,  B curve as well as the k,, 8 curve is 
very well predicted by the theory. Both theory and experiment show that heating of 
the lower wall is more stable than heating of the upper wall. Experimental data gen- 
erally fall above the theoretical curve in the case of RT, , and below it in the case of k,. 
Theoretical RT9 , has been calculated using R, that corresponds to the measurements 
made about 1 or 2 h after filling the tank. There is continuous diffusion into and from 
the stratified region a t  the bottom and top respectively, due to the presence of homo- 
geneous layers. The effect, if any, of this diffusion is to make the solute gradient in the 
stratified region steeper, thereby delaying instability. As 8 increases, the effective 
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vertical height of the stratified region becomes less and the effect of diffusion a t  the 
bottom and the top becomes more pronounced. A steeper gradient delays instability 
until RT,, is slightly higher. This effect becomes more noticeable a t  higher values 

The fact that the experimental data for the wavenumber k, are generally below the 
of 181. 
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Angle 

- 75" 
- 60' 
- 45" 
- 30" 
- 15" 

0 
+ 15' 
+ 30" 
+ 45" 
+ 60" 
+ 75" 

RT, c 

169219 
139 922 
127 234 
121 219 
122 375 
124 563 
133 805 
148 203 
169219 
205 625 
283 438 

k, 
5.195 

11.203 
16.537 
20.586 
22.405 
22.502 
20.621 
17.062 
12.880 
7.689 
2.781 

log,@ RT, c 

5.228 
5.146 
5.105 
5.084 
5.088 
5.095 
5.126 
5.171 
5.228 
5.313 
5.453 

b 3 , O  ke 

0.7156 
1.0493 
1.2185 
1.3136 
1.3503 
1-3522 
1.3143 
1.2320 
1.1099 
0.8858 
0,4442 

Note: K T / K S  = 83, Rs  = 362000, N = 12. 

TABLE 1. Summary of the theoretically computed results using the Galerkin method. 

* 
-0 30" - -15  

0 - \-- 
-60" 

-45" -30" 

I I I I I I 1 1 
0 4 8 12 16 20 24 28 

k 

FIGURE 10. Natural stability curves at various inclination angles. 

theoretical curve (figure 9) is also a likely situation. Layer thicknesses are measured 
from shadowgraphs taken about 3-5 min after the onset of instability. During this 
time, the layers continuously grow in size, and it is therefore very likely that the 
measured wavelengths are larger (or the wavenumber, k, = 2n/h,, is smaller). Con- 
sidering these experimental uncertainties, the agreement of theoretical predictions 
with experiments is excellent. 

It is interesting to note that the neutral stability curve is very flat near the critical 
state at  6 = 0" as shown in figure 10. As the magnitude of 0 increases, the critical wave- 
number becomes more and more sharply defined. This is the result of the effect of the 
angle of inclination. Since the horizontal temperature gradient is the destabilizing 
agent, a larger AT is needed to obtain the same destabilizing effect as the angle of 
inclination is increased. The sharper definition of the critical wavelength in the 6 > 0 
cases can be explained by the fact that the flow is more stable in this case as explained 
below. 

In I, we presented a physical argument involving the increased vertical solute 
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gradient which explains the enhanced stability when the lower wall is heated. I n  the 
following, we present an analytic derivation of the density gradients, both in the 
horizontal and vertical directions, due to  temperature and salt, separately. These 
results will support our earlier physical reasoning. 

The essential condition that must always be satisfied by the basic state in the fluid 
interior is that the horizontal density gradients due to 8 and T are compensating, that  
is 

aTi asi 
a- = p- ar ar- 

With transformation of co-ordinates and non-dimensionalization of the variables, the 
horizontal and vertical gradients of S and T can be written as: 

1 :  as as ay = (&sinB-cosZO , - = -sine. 

These equations are dimensionalized and integrated. Contributions to the net ff uid 
density due to solute and due to  temperature are computed in the horizontal and 
vertical directions. Fractional density distributions ( ( p  - po) /po)  are plotted in figures 
11 and 12; po is the reference fluid density a t  the centre of the slot. 

Figure 1 1  shows the steady-state distribution of density due to solute ((ps -po) /po)  
and that due to  temperature ((pT -po) /po)  in the horizontal direction. It should be 
noticed that horizontal width of the slot is a function of 8. For a given temperature 
difference across the walls, horizontal width of the slot increases with 181 and hence 
the magnitude of the gradients decreases. Except near the walls, the density gradients 
due t o  temperature and solute are always equal and opposite. For a fixed inclination, 
the magnitudes of the gradients increase as R, increases. For 8 $: 0" the magnitudes of 
horizontal gradients decrease as 8 increases, for the same R,. R,, therefore, has t o  be 
sufficiently increased before the horizontal gradients attain magnitudes conducive to 
triggering of instability a t  relatively higher 181 values. 

Figure 12 shows the steady-state fractional density distribution due to the solute 
( (pS - po)/po) and due to temperature ( (pT - po)/p,) in the vertical direction for 8 = 0", 
& 30" and ~f: 60" and R, = 0 and 100000. The actual vertical distance between the 

boundaries is 2.0 cm for 8 = 30" and 1.154 cm for 0 = f 60", as shown in the figure. 
It is noticed that the total vertical density gradient, in general, consists of the density 
gradient due to solute plus that due to  temperature. The net gradient is always equal 
to  its initial value, and is stabilizing in nature. For positive angles (lower wall heated), 
as the destabilizing density gradient due to the vertical component of the temperature 
gradient develops, the stabilizing vertical gradient due to solute increases by the same 
amount, and thus the net gradient remains unchanged. At negative angles (upper wall 
heated), heating provides part of the total vertical stabilizing effect originally provided 
by the solute alone. No vertical density gradient due to temperature ever exists in the 
case of 0 = O", and therefore the net density gradient is always due to  solute alone. 
Although the net stable vertical gradient retains its initial value, the ratio of JdS/dcl 
a t  steady state to  IdS /dc ( ,  is minimum for 8 = - 75", equals 1 for 8 = 0" and is 
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FIGURE 11. Steady-state distribution of density due to solute and due to temperature in the 

horizontal direction. -, (ps  -po)/po ; -. - ? (PT -Po)/Po. 

FIGURE 12. Steady-state distribution of density due t p  solute and due to temperature in the 
vertical direction. -, (ps -po)/po ; -. - 9 (PT -Po)/Po. 
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maximum for 8 = + 75", for the same amount of heating. Since the sideways 
double-diffusive instability observed in the experiments involves heated parcelsof fluid 
rising against the background solute gradient, the steady state showing the larger 
solute gradient will be more stable. 
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